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Neural Network Identification, Predictive
Modeling and Control with a Sliding Mode
Learning Mechanism: an Application to the

Robotic Manipulators

Andon V. Topalov, Okyay Kaynak and Nikola G. Shakev

Abstract—The features of a novel adaptive PID-like
neurocontrol scheme for nonlinear plants are presented. The
controller tuning is based on an estimate of the command-
error determined via one-step-ahead neural predictive model
of the plant. An on-line learning sliding mode algorithm is
applied to the model and to the controlier as well. The control
architecture developed has been simulated and its effect on
the trajectory tracking performance of a simple two-degree-
of-freedom robot manipulator has been evaluated. The results
show that both learning structures, the neural predictive
model and the controller, inherit some of the advantages of
SMC: high speed of learning and robustness.

Index Terms—Neural Networks, Modeling, Identification,
Sliding Mode Control, Adaptive Control

L. INTRODUCTION

IN contemporary robotic systems, there is a need for more
flexible and robust robot controllers in order to take full
advantage of the inherent flexibility and versatility of
manipulation robots. Due to the highly nonlinear and
coupled dynamics of manipulators and the often unknown
inertial properiies of the objects being manipulated,
accurate trajectory fracking is difficult to obtain.
Conventional non-adaptive control algorithms are not
robust enough, because they compensate only a small
number of the uncertainties noted and the tracking
performance obtained is generally poor. Hence, a more
suitable approach would be the one using adaptive control
techniques. Conventional adaptive control techniques in
robotics are efficient in the case of compensation of
structured uncertainties only. A solution fo the robot
control problem requires combining conventional
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approaches with new learning approaches in order to
achieve good performance. Thus the nced to meet
demanding control requirement leads toward design of
intelligent manipulation robots [1]. Connectionist methods
with distributed processing provide the implementation
tools for modeling the complex input/cutput relations of
robot’s dynamics and kinematics. The connectionist
approach may, in principle solve the problem of variable -
coupling complexity and state - dependency of robot
dynamic model, because neural networks throngh the
process of training can approximate input-output mappings.
In this way connectionist structure as part of decentralized
feedback contrel law can compensate wide range of robot
uncertainties. Several neural network models and learning
schemes were applied to learning of robot dynamics,
recently and various neuro-controllers could be trained in a
way that the desired plant output is attained as much as
possible [2] - [3].

Amother approach that has received much attention is the
intelligent tuning ¢f conventional controllers using neural
networks [4], [5] — [7]. Efficient implementation of a neural
network-based strategy for the on-line adaptive control of
such systems centers on the rapidity of the convergence of
the training scheme used for learning the system dynamics.
In this paper a movel neuro-adaptive PID control scheme
based on a neural predictive model with a fast on-line
sliding mode learning mechanism is presented and a
trajectory tracking control of a robot manipulator is
simulated.

The main body of the paper contains six sections.
Section 2 presents the analytical model of the robot
manipulator dynamics. Section 3 describes the proposed
neuro-adaptive control scheme. Section 4 presents the
applied sliding mode learning algorithm. Simulation results
are shown in Section 5. Finally, section 6 summarizes the
findings of this investigation.

II. THE ANALYTICAL MODEL OF THE ROBOT MANIPULATOR
DyNaMiICs

The dynamic model for a general n-degree-of-freedom
rigid manipulator in the absence of friction and other
disturbances (deterministic model) can be written in the
form

T=f(q,q’q’¢)) = M(‘I,@)‘I + N(q,qa¢) (1)
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where TeR” - is the vector of driving torques or forces,

nxn

M(q,@):R"xp=R is the inertial matrix of the system;

N(q,q,0):R"xR"x@=>R"™ is wvector which includes
Centrifugal, Coriolis and gravitational effects; peR™ is
the system parameter vector; » - is the number of degree of
freedom; ar - is the number of system parameters.
Discretization of the non-tinear dynamics for purposes of
controller design has been well studied and some models
that ensure the conversion of energy and momentum are
developed [8]. Typically used discretized models for the i-

th joint dynamics are given by the following equation, [9}:

gi ke + )=l (k) (khan ()} [, (k2 (b (1)] @)
where g, (k )=[g(k),q(k-1).. qlk—mF
q

ay (k)=lalk ) a(k-1). gl —m, )T
ua(k) [u(k) u(k 1},u 2) (A m3)]7
g0 (k)=[a(k).qlk-
g, ()=[alk). 4k 1).

uc(k)=[u(k),u(k~ll~.u(k—m6)]3r :

and @,() and W,() are continuous non-lincar functions

of the arguments u,q and . m,my,my,my.mg and myg
are appropriate positive integers. The subscripts a,b,c and
efor g,¢ and » in (2) arc used to define at instant

k vectors of joint positions, joint velocities, and the control
functions (forces and/or torques) constructed from past data
of different lengths.

II1. THE NEURO-ADAPTIVE CONTROL SCHEME

The control strategy designed is a decentralized one that
permits implementation of independent joint controls. The
controller tuning is based on an estimate of the command
error on its output. The latter is determined by calculating
the Jacobians and the one-step-ahead predicted trajectory
error for each joint using a neural predictive model. A
robust on-line learning algorithim, based on the direct use of
sliding mode control (SMC) theory is applied to both: to
the controller and to the model as well,

Let us consider that the required control u, (k) for i -th

robot joint at time instant £ will be computed using PID
control law as follows:

k
(k)= Ky (k)& (k)+ K (B) X6 (D + K (k)& () -, (ke =1)) (3)
=1

where X ;(k), s=12,3 are the controller parameters for

i -th robot joint at time instant & , &(k)=q,(k)—q,(k) is the
feedback error, and g,(k), and gz k) are the real and

desired coordinates for / -th robot joint at time instant % ,
respectively.

The proposed neuro-adaptive conirol architecture is
presented on Fig. 1. The major concern is the application of
neural networks in robot control at executive hierarchical
level {motion control problem) as one-step-ahead predictors
in the case where exact robot dynamics is unknown. The
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problem of interest is to evaluate the controls

u;(k), i=L2,..,n to be applied to the individual joints
such that a desired tracking motion of each joint specified
by the trajectories g (k), i=12,.,n ensues.
u, (k) a®
gall+D) P 1w
@ o D Robot
- ugiZlf'oller Manipulater W
&k I ¢
ﬁ ~
QJ(k)>qJ (k 1) » L i ~ e}m(k)
400,60, J 8 — @k g
iij ‘i: . [TD
W —

Fig. 1. The neuro-adaptive control architecture

For implementing an adaptive control that can deliver
satisfactory performance, parameter estimation followed by
updating of control is needed at each adaptation step. Since
the functions @;() and Y¥;{) in (2) are not known a
priori, a neural network-based approach for their
identification at each time step & is implemented in order
to facilitate adjustment of the controller gains and the
computation of the required controls, Two two-layered
feedforward neural networks with identical structure are
used for on-line identification of functions @,() and

¥;() in the manipulator dynamics and for one-step-ahead

prediction of the coordinates of the i -th robot joint by
using the following model (see Fig. 1)

‘}i (k +l)=(i)i[%:(k ):%(k )> ua(k ): WCD]"'\ili [qc(k)x Qe(k ): Ue (k )> pKP] 4

where §;(k +1) is the one-step-ahead predicted coordinate
for / -th robot joint, obtained from the connectionist joint
model.

A weight-updating rule based on the direct use of SMC
strategy is implemented and training is continued on-line
during the execution of robot motion. The model error that
is to be minimized is defined as follows:
emi (kY = ;(6) = G, (k) (5)

The input signals to the neural network model during the
identification and control phases in the present scheme
remain the same, which offers considerable implementation
benefits.

It is possible to deduce the rule for parameters
adjustment of the controller through the minimization of
the following performance criterion:

Sy =12 g (k+1) g (k+1))° (6
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In the above g4 (k +1) is the desired joint coordinate at
time instant £ +1.

In the approach adopted in this paper, an estimate of the
command-error for i -th robot joint e, (k +1), named

“virtual” command-error, is obtained as in (7):

87, (k)

ou, (k)

The connectionist model of the /-th robot joint in
accordance with {(4) can be expressed as follows:

k ])M on

€y (k+l): _[th k+1

g lk+1)= z 2L k) /; [ SWIE (ALY (k)} +

+zwz (k)f[[ZWIm(k)A ()} (8)

r=1

where S1 is the number of neurons in the hidden layer, P
is the number of the inputs of the network, Wlfﬂ- and
w l;fl arc the weights of the /-th neuron in the hidden
layer from its r-th input for the first and second neural
network of the i-th robot joint respectively, W 2;? and
WZEJ are the weights of the neurons in the output layers,
AP =g, 00,5 )., 8]
Ay =la.(0).q,00.u,(6)] are data arrays with length P,

presented to the inputs of the two networks respectively at
time instant % , and composed in accordance with (2), /()

and and

is a log-sigmoid function.

The M can be determined as in (9):
Hi
04, (k+1) _(0,0)  ,0) ®
aui(k) a”!(k) du, (]‘)
P
Let AP (k)= Sw12 (k)42 (k) then
r=1
b, () &(, k) AU N (k)
w25 (k) (- f) =L (10
uf(k) Z e ) )
a‘{h (k) dqu (k) z aAg)( )
where ,,( ) and
QY (ky Qi () Zl T du (k)
1
e
In the same way it can be proven that
P40 St wr - )zm W2 ® gy,
au ) Pt I li I Iri u,-(k)

1

where f; = 0

l+e

In that particular case when Af?(k)=u,-(k) and

aA“’(k) Y (k)

b7 o ri —

Ay (ky=u;(k), (k) d __au,»(k) 1. In all other
AL () - A2 (k-1

cases an approximated value

s

u; (k) —u; (k -1)
A7 ()= A (& -
(k) —u; (k-1

b

respectively can be used.

1V. THE SLIDING MODE LEARNING ALGORITHM

In the theory of control enginecring, one way of
designing a robust and stable control system is to use the
Variable Structure Systems (VSS) approach, which enables
the designer to come up with a rigorous stability analysis. It
is a well-known fact that a variable structure controller with
a switching output will (under certain circumstances) result
in a sliding mode on a predefined subspace of the state
space. This mode has useful invariance properties in the
face of uncertainties in the plant model and therefore is a
good candidate for tracking control of uncertain nonlinear
systems.

The studies demonstrating the high performance of the
variable structure control in handling the uncertainties and
imprecision have motivated the use of sliding mode control
scheme in training of ANN. The results presented in [10]
have shown that the convergence properties of the gradient-
based training strategies can be improved by utilizing the
SMC scheme. The method presented can be considered as
an indirect use of VS8S theory. Some studies on the direct
use of SMC strategy are also reported in the literature [11]
— [12]. In another paper [13], the existence of a relation
between sliding surface for the plant to be controlled and
the zero leaming error level of the parameters of a flexible
controller is discussed and the control applications of the
method considered in [11] — [12] are studied with constant
uncertainty bounds.

Recently, a new learning algorithm for training
multilayer artificial neural networks, based on direct use of
SMC strategy, was proposed by G. G. Parma et al. [14] -
[15]. Its on-line version presented in [14] has been initially
tested for the identification of a periodic time signal. In
addition (o the applicability of the newly proposed
algorithm for updating the weights in the hidden layers of
multilayer network structures it also differs from the
algorithms in [11] — {12] due to the definition of the sliding
surface which is now determined by taking not only the
learning error variable, but also its tiinc derivative. The
latter contributes very much to the fast convergence
capability of the algorithm. This property is crucial for on-
line learning in applications demanding adaptation to
constantly changing environmental parameters, such as
adaptive real-time control.

In this work the algorithm proposed in [14] is applied to
the both learning structures: the neural predictive model
and the controller.

The design is divided into two phases. In the first, sliding
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surfaces to produce the input/output behavior are defined.
In the second, the weights are updated in order to satisfy
the conditions for tracking and sliding on the surfaces.
Consider the virtual errors e,; , by adding to these terms
the terms pu;, (p=0), respectively, for penalizing the
controls u; a simple type of optimal control criterion is
achieved.
ey = e+ pu (12)
As p is increased the control signal will become
smoother and will attain smaller values.
For the output layer of the 7 -th joint neural predictive

model and for the controller output respectively, the
following sliding surfaces are then defined:

S = pi +)”mierm 3 S = é:r + )“ufe:f (13)
where 4,,, A, >0 are constants.
For the hidden layer of the 7 -th joint model, the sliding

surface is defined as in (14):

Spi =i + Apien; (14}

1
where e;; = Eez

mi

and Ay; >0, [14].

Therefore, the weight update rules for the output layer of
the 7 -th joint model and for the controller can be defined as
in (15) and (16) respectively (for «,; >0 and a,; >0),
[14]:

W’Zh =0 Sign(smi lemr’ |fl1
hsi

s

Ky = atysign(Se fei (16)

The weight update rule for the hidden layer of the neural
model is defined as in (17) (for 5, >0);

ﬂimsjgn(SHf ]eh'fl )
(emiwzh‘ + TIXI - flf )fh "

Wiy, = )

where 77 is a small constant introduced to avoid

W1, == when e, —0.

A natural solution to avoid the chattering behavior
{which is a well known problem associated with SMC) is to
smooth the discontinuity in the signum function in (15) -
(17). One possible solution is to use a sigmoid-like
function.

S

Vs (S)=W (18)

where 4 is a small positive scalar.
The conditions for the analysis of the algorithm from the
sliding mode point of view are:
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(i) ¥ and y are limited with limited derivatives;
(ii) fi () is differentiable and limited.

For the leaming structures described, these conditions
are obviously fulfilled.

Using the well-known conditions for sliding mode
regime [16], the bounds for the constants A ,,, 4,; and

Ag;i that appear in (13) and (14) are obtained as:

2 aflz |é"11|}
A gy 2 max { — —— —— 19
i { Sy ot Iemfl
.k
€yt
Ay = max |- (20
eut
2 04 IéHll
A >maxd 2. %40 21
”f’“‘a"{ I |eH,|} @y

The ideal situation would be to have always high values
of A, A, and A z; to guarantee fast canvergence, but

there is in fact a trade-off between the values of A4,

Ay and A 4, and the relevant values of a,,, &, and
By » which by their turn, depend also on the amplitude
variations of the system parameters. Therefore, for every
system to be controlled, the bounds for «,,;, e,; and 5,
(and A ,,;, A, and A g;) should be derived in advance in
order to predict convergence and stability properties.

The upper limits of a@,,. ,, and B, can be obtained
from the sliding surface expression. For a given S,
delimited by the training data and network topology, the
upper limits for the gains, or learning rates, «,,;, &, and
B can be easily obtained. According to Utkin [16], the
condition for existence of sliding mode and system stability
is defined by (22). Since the adaptation of the weights of
the learning network structures, which could be interpreted
as control signals with regard to this structures, is a
function of «,,, @, and f,,, the analysis of (22) results
in their limit values,

as

5—<0

22
= 22)

Convergence is guaranticed for any values of «,,;, &;
and f,,, within the limits established by S, since it
implies on the existence of sliding mode. For discrete time,
where Sampturk et al. [17] defined the condition
|tk +1]<|S(k). instead of (22). as a condition to
guarantee the sliding manifold, a way to define the limits
for gains a,,,, a,; and f,, is presented in [15].

With the surfaces defined as in (13) ~ (14), the weight
updating rules defined as in (15) - (17), 4 ,;, A, and
A ; satisfying the boundary conditions ((19) — (21)), it
can be affirmed that the model error e,,; and the “virtual”
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command-errer e,; tend to zero [14],

V. SIMULATION EXPERIMENTS

The tracking performance and the adaptation capabilities
of the presently developed neuro-adaptive PID control
scheme have been evaluated by conducting several
simulation experiments using a simple two-link
manipulator shown in Fig. 2. The manipulaior was modeled
as two rigid links of lengths /y= 0.5 m and /,= 0.5m with

point masses ;= 10 kg and m,= 8 kg at the distal ends of

the links. The dynamic equations of the manipulator can be
found in [18]. The simulations were carmried out using a
fourth order Runge-Kutta algorithm with a step size 0.002
sec.

1

"y

q,

Fig. 2. A two-link manipulator

\ J

A discrete-time representation of the joint dynamics in
the form of (2) results in the values for delay parameters
my, my, my, my, Mms and mg. The resolts obtained in

[9] were accepted here and the following values for delay
parameters were applied for both robot joints: my = 2; m;,
=2, my=0; my=2; ms=2and mg= 1. They werc used to
form the data arrays A;(k) and B, (k), presented to the
inputs of the networks. The number of nodes in the hidden
layer of the neural networks used for identification of the
unknown functions @,() and W¥,¢), I = 1,2, was set 1o
10. The accepted values of the different coefficients and
constants during the simulations were: A4,,, 4, and

o Ba=5107" o, =8107; §=1107

and 7=1.107%,

A component was inciuded in the control law that takes
over from the controlier adaptation as its approximating
ability begins to degrade (early stages of learning when the
initial network approximations may be quite poor). So
adaptation mechanismm was stopped when
| gk +1)-g;(k +1)[>0.01 or | & (k)[>0.001.

The overall algorithm was simulated and tested for
trajectory tracking control tasks with respect to three
criteria; convergence properties of the proposed controller,
adaptation capability of the algorithm for sudden changes
in manipulator dynamics and generalization properties of
the proposed scheme.

For evaluating the performance of the control scheme in
executing a typical trajectory task, a 4.8 s motion was
considered during which the manipulator arm was required
to follow the reference trajectories ¢, and gq;,. The

desired joint position trajectories were chosen as:

/?'Hi:l; (24

i

106

g1 =—0.77+0.8sin((2/4.8) - 7/2);

gq7 =—0.8-0.8sin(2m/4.8)-7/2) 23)

The results are presented on Fig. 3. The following
denotations are used for figures 3, 4 and 5: Solid lines
trajectories are actual trajectories. Desired trajectories are
plotted with dashed lines and neural model outputs - with
dash-doted lines. Position errors for joint 1 are ploited with
solid line white for joint 2 - with a dashed line

Tracking results

Position jradians)

Error [radians|

Timejsec]

Fig. 3. Tracking performance of proposed neuro-adaptive PID control,

For testing the rate of convergence, an initial mismatch
in the positions of both joints was included (0.3 rad for the
first joint and -0.3 rad for the second joint). The results are
presented on Fig. 4. It can be seen that after the first G.5 s
interval, the joint outputs clesely follow (indicated in solid
lines on Fig. 4) the required trajectories demonstrating a
good tracking performance of the control scheme.

Tracking results in joint space

......

Position [radians|

.........................

Etror Jradians)

Time[sec)

Fig. 4. Tracking performance under initial mismatch 0.3 rad in the
positions of joint 1 and joint 2.

When the manipulator grasps an unknown object to
move to a new position, there is a discontinuity in inertia
and gravity forces at the moment the object is grasped. For
ensuring a robust performance the control scheme should
adapt very quickly to the new dynamical parameters.

In order to demonstrate the adaptation capability of the
control scheme to execute desired motions in the face of
unforeseen parameter variations, an example of pick and
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place task, commonly performed by industrial manipulators
was carried out. In this example the manipulator was
required during the following specified 4.8 s trajectory at
time 2 s to pick up an unknown load. The pay-load is
considered as an increasing of the point mass of the second
link from 8 kg to 16 kg. In order to present greater
challenges to the control scheme additional dynamical
phenomenon was introduced. During the motion, the load
carried out was "accidentally" dropped at 4.2 s. The
performance delivered by the present controller under these
conditions is depicted in Fig. 5, where the joint output
profiles- are indicated in solid lines while tracking the
reference trajectories indicated in dashed lines. A rapid
damping of the oscillations at the points of discontinuity
and a quick return to following the reference motions can
be noticed.

Tracking results in joint space

Posttion [ratians}

Time[sec|

Fig. 6. Tracking performance under parameter variations (during the
forward motion at time 2 s the mass of the joint 2 was doubled to simulate
object grasping while doring the return motion at time 4.2 s the load
carried was “accidentally” dropped).

The good performance resulting even under the changed
conditions underscores the fast adaptation and the
robustness of the proposed neuro-adaptive controller.

VI. CONCLUSION

The proposed method enables to understand a physical
meaning of the control parameters, and also to adjust
controller’s gains auickly. The use of neural networks for
identifving the functions and from the input-output data
not only facilitates the adaptation of controller parameters
to the changes in manipulator dynamics and/or external
conditions, but also eliminates problems associated with
ummodeled dynamics. In contrast, it may be noted that the
popular model-based approaches for robot control (such as
the computed torque technique [18]) can result in poor
control performance if the specific model structure selected
(on which the controller design is based) does not
compietely reflect all of the existing dynamics. Training by
proposed  connectionist structure is  accomplished
exclusively in on-line regime with a variable structure
systems theory based learning mechanism. The updating of
the neural network weights during the control phase is
useful in improving the tracking performance in the face of
changes in system dynamics and noisy measurements. In

the proposed control scheme the neural networks adapt to
these changed conditions in a relatively fast manner. This
control structure provides an internal teacher so that the
control scheme works in an unsupervised manner, because
we have no external teacher in this case. :

The control architecture developed has been simulated
and its effect on the trajectory tracking performance of a

._simple two-~degree-of-freedom robot manipulator has been

evaluated (convergence speed in identification and tracking
accuracy). The adaptation capabilities of the controller are
analyzed using different trajectory tracking scenarios.
These experiments confirm that the neural network based
adaptive PID control strategy proposed is effective in the
trajectory tracking tasks.
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